

Raymond A. Serway Chris Vuille

Rotational Motion

- An important part of everyday life
 - Motion of the Earth
 - Rotating wheels
- Angular motion
 - Expressed in terms of
 - Angular speed
 - Angular acceleration
 - Centripetal acceleration

Gravity

- Rotational motion combined with Newton's Law of Universal Gravity and Newton's Laws of motion can explain aspects of space travel and satellite motion
- Kepler's Three Laws of Planetary Motion
 - Formed the foundation of Newton's approach to gravity

Angular Motion

- Will be described in terms of
 - Angular displacement, $\Delta \theta$
 - Angular velocity, ω
 - Angular acceleration, α
- Analogous to the main concepts in linear motion

The Radian

- The radian is a unit of angular measure
- The radian can be defined as the arc length s along a circle divided by the radius r
- $\theta = \frac{s}{r}$

More About Radians

Comparing degrees and radians

$$1 rad = \frac{360^{\circ}}{2\pi} = 57.3^{\circ}$$

• Converting from degrees to radians

$$\theta$$
 [rad] = $\frac{\pi}{180^{\circ}} \times \theta$ [degrees]

Angular Displacement

- Axis of rotation is the center of the disk
- Need a fixed reference line
- During time t, the reference line moves through angle θ
- The angle, θ, measured in radians, is the angular position

Rigid Body

- Every point on the object undergoes circular motion about the point O
- All parts of the object of the body rotate through the same angle during the same time
- The object is considered to be a **rigid body**
 - This means that each part of the body is fixed in position relative to all other parts of the body

Angular Displacement, cont.

- The angular displacement is defined as the angle the object rotates through during some time interval
- $\Delta \theta = \theta_f \theta_i$
- The unit of angular displacement is the radian
- Each point on the object undergoes the same angular displacement

Average Angular Speed

 The average angular speed, ω, of a rotating rigid object is the ratio of the angular displacement to the time interval

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_f - t_i} = \frac{\Delta \theta}{\Delta t}$$

Angular Speed, cont.

- The *instantaneous* angular speed is defined as the limit of the average speed as the time interval approaches zero
- SI unit: radians/sec
 - rad/s
- Speed will be positive if θ is increasing (counterclockwise)
- Speed will be negative if θ is decreasing (clockwise)
- When the angular speed is constant, the instantaneous angular speed is equal to the average angular speed

Average Angular Acceleration

 An object's average angular acceleration α_{av} during time interval Δt is the change in its angular speed Δω divided by Δt:

$$\alpha_{av} = \frac{\omega_f - \omega_i}{t_f - t_i} = \frac{\Delta \omega}{\Delta t}$$

Angular Acceleration, cont

- SI unit: rad/s²
- Positive angular accelerations are in the counterclockwise direction and negative accelerations are in the clockwise direction
- When a rigid object rotates about a fixed axis, every portion of the object has the same angular speed and the same angular acceleration
 - The tangential (linear) speed and acceleration will depend on the distance from a given point to the axis of rotation

Angular Acceleration, final

 The instantaneous angular acceleration is defined as the limit of the average acceleration as the time interval approaches zero

Analogies Between Linear and Rotational Motion

- There are many parallels between the motion equations for rotational motion and those for linear motion
- Every term in a given linear equation has a corresponding term in the analogous rotational equations

Linear Motion with <i>a</i> Constant	Rotational Motion About a Fixed	
(Variables: x and v)	Axis with α Constant (Var	iables: θ and ω)
$v = v_i + at$	$\omega = \omega_i + \alpha t$	[7.7]
$\Delta x = v_i t + \frac{1}{2}at^2$	$\Delta heta = \omega_i t + \frac{1}{2} \alpha t^2$	[7.8]
$v^2 = v_i^2 + 2a\Delta x$	$\omega^2 = \omega_i^{\ 2} + 2 \alpha \Delta heta$	[7.9]

Relationship Between Angular and Linear Quantities

• Displacements

 $s = \theta r$

• Speeds

 $v_t = \omega r$

• Accelerations

$$a_t = \alpha r$$

- Every point on the rotating object has the same angular motion
- Every point on the rotating object does *not* have the same linear motion

Centripetal Acceleration

- An object traveling in a circle, even though it moves with a constant speed, will have an acceleration
- The centripetal acceleration is due to the change in the *direction* of the velocity

Centripetal Acceleration, cont.

- Centripetal refers to "center-seeking"
- The direction of the velocity changes
- The acceleration is directed toward the center of the circle of motion

Centripetal Acceleration, final

Section 7.4

• The magnitude of the centripetal acceleration is given by

$$a_c = \frac{v^2}{r}$$

This direction is toward the center of the circle

Centripetal Acceleration and Angular Velocity

- The angular velocity and the linear velocity are related (v = r ω)
- The centripetal acceleration can also be related to the angular velocity

$$a_c = \frac{v^2}{r} = \frac{r^2 \omega^2}{r} = r \omega^2$$

Total Acceleration

- The tangential component of the acceleration is due to changing speed
- The centripetal component of the acceleration is due to changing direction
- Total acceleration can be found from these components

$$a = \sqrt{a_t^2 + a_c^2}$$

Vector Nature of Angular Quantities

- Angular displacement, velocity and acceleration are all vector quantities
- Direction can be more completely defined by using the right hand rule
 - Grasp the axis of rotation with your right hand
 - Wrap your fingers in the direction of rotation
 - Your thumb points in the direction of ω

Velocity Directions, Example

- In a, the disk rotates counterclockwise, the direction of the angular velocity is out of the page
- In b, the disk rotates clockwise, the direction of the angular velocity is into the page

Acceleration Directions

- If the angular acceleration and the angular velocity are in the same direction, the angular speed will increase with time
- If the angular acceleration and the angular velocity are in opposite directions, the angular speed will decrease with time

Forces Causing Centripetal Acceleration

- Newton's Second Law says that the centripetal acceleration is accompanied by a force
 - $-F_{c} = ma_{c}$
 - F_c stands for any force that keeps an object following a circular path
 - Tension in a string
 - Gravity
 - Force of friction

Centripetal Force Example

- A puck of mass *m* is attached to a string
- Its weight is supported by a frictionless table
- The tension in the string causes the puck to move in a circle

Centripetal Force

• General equation

$$F_c = ma_c = \frac{mv^2}{r}$$

- If the force vanishes, the object will move in a straight line tangent to the circle of motion
- Centripetal force is a classification that includes forces acting toward a central point
 - It is not a force in itself
 - A centripetal force must be supplied by some actual, physical force

Problem Solving Strategy

- Draw a free body diagram, showing and labeling all the forces acting on the object(s)
- Choose a coordinate system that has one axis perpendicular to the circular path and the other axis tangent to the circular path
 - The normal to the plane of motion is also often needed

Problem Solving Strategy, cont.

• Find the net force toward the center of the circular path (this is the force that causes the centripetal acceleration, F_c)

The net radial force causes the centripetal acceleration

• Use Newton's second law

- The directions will be radial, normal, and tangential
- The acceleration in the radial direction will be the centripetal acceleration
- Solve for the unknown(s)

Applications of Forces Causing Centripetal Acceleration

- Many specific situations will use forces that cause centripetal acceleration
 - Level curves
 - Banked curves
 - Horizontal circles
 - Vertical circles

Level Curves

- Friction is the force that produces the centripetal acceleration
- Can find the frictional force, μ, or v

$$v = \sqrt{\mu rg}$$

Banked Curves

 A component of the normal force adds to the frictional force to allow higher speeds

$$\tan\theta = \frac{v^2}{rg}$$

or $a_c = g \tan\theta$

Vertical Circle

- Look at the forces at the top of the circle
- The minimum speed at the top of the circle can be found

$$v_{top} = \sqrt{gR}$$

Forces in Accelerating Reference Frames

- Distinguish real forces from fictitious forces
- "Centrifugal" force is a fictitious force
 - It most often is the absence of an adequate centripetal force
 - Arises from measuring phenomena in a noninertial reference frame

Newton's Law of Universal Gravitation

If two particles with masses m₁ and m₂ are separated by a distance r, then a gravitational force acts along a line joining them, with magnitude given by

$$F = G \frac{m_1 m_2}{r^2}$$

Universal Gravitation, 2

- G is the constant of universal gravitational
- $G = 6.673 \times 10^{-11} N m^2 / kg^2$
- This is an example of an *inverse square law*
- The gravitational force is always attractive

Universal Gravitation, 3

- The force that mass 1 exerts on mass 2 is equal and opposite to the force mass 2 exerts on mass 1
- The forces form a Newton's third law action-reaction

Universal Gravitation, 4

 The gravitational force exerted by a uniform sphere on a particle outside the sphere is the same as the force exerted if the entire mass of the sphere were concentrated on its center

 This is called Gauss' Law

Gravitation Constant

- Determined experimentally
- Henry Cavendish
 1798
- The light beam and mirror serve to amplify the motion

Applications of Universal Gravitation

- Acceleration due to gravity
- g will vary with altitude

$$g = G \frac{M_E}{r^2}$$

• In general,

$$g_{planet} = G \frac{M_{planet}}{r^2}$$

Table 7.1 Free-Fall
Acceleration g at Various
Altitudes

Altitude (km) ^a	$g({ m m/s^2})$
1 000	7.33
$2\ 000$	5.68
3 000	4.53
$4\ 000$	3.70
$5\ 000$	3.08
$6\ 000$	2.60
$7\ 000$	2.23
8 000	1.93
9 000	1.69
$10\ 000$	1.49
$50\ 000$	0.13

^aAll figures are distances above Earth's surface.

Gravitational Potential Energy

- PE = mgh is valid only near the earth's surface
- For objects high above the earth's surface, an alternate expression is

$$PE = -G \frac{M_{E}m}{r}$$

- With $r > R_{earth}$
- Zero reference level is infinitely far from the earth

Escape Speed

• The escape speed is the speed needed for an object to soar off into space and not return

$$v_{esc} = \sqrt{\frac{2GM_{E}}{R_{E}}}$$

- For the earth, v_{esc} is about 11.2 km/s
- Note, v is independent of the mass of the object

Various Escape Speeds

- The escape speeds for various members of the solar system
- Escape speed is one factor that determines a planet's atmosphere

Table 7.2Escape Speeds forthe Planets and the Moon

Planet	$v_{ m esc}~(m km/s)$	
Mercury	4.3	
Venus	10.3	
Earth	11.2	
Moon	2.3	
Mars	5.0	
Jupiter	60.0	
Saturn	36.0	
Uranus	22.0	
Neptune	24.0	
Pluto ^a	1.1	

^aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined as a "dwarf planet" (like the asteroid Ceres).

Kepler's Laws

- All planets move in elliptical orbits with the Sun at one of the focal points.
- A line drawn from the Sun to any planet sweeps out equal areas in equal time intervals.
- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.

Kepler's Laws, cont.

- Based on observations made by Brahe
- Newton later demonstrated that these laws were consequences of the gravitational force between any two objects together with Newton's laws of motion

Kepler's First Law

- All planets move in elliptical orbits with the Sun at one focus.
 - Any object bound to another by an inverse square law will move in an elliptical path
 - Second focus is empty

Kepler's Second Law

- A line drawn from the Sun to any planet will sweep out equal areas in equal times
 - Area from A to B and C to D are the same
 - The planet moves more slowly when farther from the Sun (A to B)
 - The planet moves more quickly when closest to the Sun (C to D)

Kepler's Third Law

- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.
 - T is the period, the time required for one revolution
 - $-T^{2} = K a^{3}$
 - For orbit around the Sun, $K = K_s = 2.97 \times 10^{-19} \text{ s}^2/\text{m}^3$
 - K is independent of the mass of the planet

Kepler's Third Law, cont

- Can be used to find the mass of the Sun or a planet
- When the period is measured in Earth years and the semi-major axis is in AU, Kepler's Third Law has a simpler form

 $-T^2 = a^3$

Communications Satellite

- A geosynchronous orbit
 - Remains above the same place on the earth
 - The period of the satellite will be 24 hr
- $r = h + R_E$
- Still independent of the mass of the satellite