

Raymond A. Serway Chris Vuille

Chapter Seven

Rotational Motion and

The Law of Gravity

Rotational Motion

- An important part of everyday life
- Motion of the Earth
- Rotating wheels
- Angular motion
- Expressed in terms of
- Angular speed
- Angular acceleration
- Centripetal acceleration

Gravity

- Rotational motion combined with Newton's Law of Universal Gravity and Newton's Laws of motion can explain aspects of space travel and satellite motion
- Kepler's Three Laws of Planetary Motion
- Formed the foundation of Newton's approach to gravity

Angular Motion

- Will be described in terms of
- Angular displacement, $\Delta \theta$
- Angular velocity, ω
- Angular acceleration, α
- Analogous to the main concepts in linear motion

The Radian

- The radian is a unit of angular measure
- The radian can be defined as the arc length s along a circle divided by the radius r
- $\theta=\frac{s}{r}$

More About Radians

- Comparing degrees and radians

$$
1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi}=57.3^{\circ}
$$

- Converting from degrees to radians

$$
\theta[\mathrm{rad}]=\frac{\pi}{180^{\circ}} \times \theta[\text { degrees }]
$$

Angular Displacement

- Axis of rotation is the center of the disk
- Need a fixed reference line
- During time t, the reference line moves through angle θ
- The angle, θ, measured in radians, is the angular position

Rigid Body

- Every point on the object undergoes circular motion about the point 0
- All parts of the object of the body rotate through the same angle during the same time
- The object is considered to be a rigid body
- This means that each part of the body is fixed in position relative to all other parts of the body

Angular Displacement, cont.

- The angular displacement is defined as the angle the object rotates through during some time interval
- $\Delta \theta=\theta_{f}-\theta_{i}$
- The unit of angular displacement is the radian
- Each point on the object undergoes the same angular displacement

Average Angular Speed

- The average angular speed, ω, of a rotating rigid object is the ratio of the angular displacement to the time interval

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{f}-t_{i}}=\frac{\Delta \theta}{\Delta t}
$$

Angular Speed, cont.

- The instantaneous angular speed is defined as the limit of the average speed as the time interval approaches zero
- SI unit: radians/sec
- rad/s
- Speed will be positive if θ is increasing (counterclockwise)
- Speed will be negative if θ is decreasing (clockwise)
- When the angular speed is constant, the instantaneous angular speed is equal to the average angular speed

Average Angular Acceleration

- An object's average angular acceleration α_{av} during time interval Δt is the change in its angular speed $\Delta \omega$ divided by Δt :

$$
\alpha_{a v}=\frac{\omega_{f}-\omega_{i}}{t_{f}-t_{i}}=\frac{\Delta \omega}{\Delta t}
$$

Angular Acceleration, cont

- SI unit: rad/s²
- Positive angular accelerations are in the counterclockwise direction and negative accelerations are in the clockwise direction
- When a rigid object rotates about a fixed axis, every portion of the object has the same angular speed and the same angular acceleration
- The tangential (linear) speed and acceleration will depend on the distance from a given point to the axis of rotation

Angular Acceleration, final

- The instantaneous angular acceleration is defined as the limit of the average acceleration as the time interval approaches zero

Analogies Between Linear and Rotational Motion

- There are many parallels between the motion equations for rotational motion and those for linear motion
- Every term in a given linear equation has a corresponding term in the analogous rotational equations

Linear Motion with \boldsymbol{a} Constant (Variables: \boldsymbol{x} and \boldsymbol{v})	Rotational Motion About a Fixed Axis with $\boldsymbol{\alpha}$ Constant (Variables: $\boldsymbol{\theta}$ and $\boldsymbol{\omega}$)	
$v=v_{i}+a t$	$\omega=\omega_{i}+\alpha t$	$[7.7]$
$\Delta x=v_{i} t+\frac{1}{2} a l^{2}$	$\Delta \theta=\omega_{i} t+\frac{1}{2} \alpha t^{2}$	$[7.8]$
$v^{2}=v_{i}^{2}+2 a \Delta x$	$\omega^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$	$[7.9]$

Relationship Between Angular and Linear Quantities

- Displacements

$$
s=\theta r
$$

- Speeds

$$
v_{t}=\omega r
$$

- Accelerations

$$
a_{t}=\alpha r
$$

- Every point on the rotating object has the same angular motion
- Every point on the rotating object does not have the same linear motion

Centripetal Acceleration

- An object traveling in a circle, even though it moves with a constant speed, will have an acceleration
- The centripetal acceleration is due to the change in the direction of the velocity

Centripetal Acceleration, cont.

- Centripetal refers to "center-seeking"
- The direction of the velocity changes
- The acceleration is directed toward the center of the circle of motion

-a

Centripetal Acceleration, final

- The magnitude of the centripetal acceleration is given by

$$
a_{c}=\frac{v^{2}}{r}
$$

- This direction is toward the center of the circle

-a

Centripetal Acceleration and Angular Velocity

- The angular velocity and the linear velocity are related $(v=r \omega)$
- The centripetal acceleration can also be related to the angular velocity

$$
a_{c}=\frac{v^{2}}{r}=\frac{r^{2} \omega^{2}}{r}=r \omega^{2}
$$

Total Acceleration

- The tangential component of the acceleration is due to changing speed
- The centripetal component of the acceleration is due to changing direction
- Total acceleration can be found from these components

$$
a=\sqrt{a_{t}^{2}+a_{c}^{2}}
$$

Vector Nature of Angular Quantities

- Angular displacement, velocity and acceleration are all vector quantities
- Direction can be more completely defined by using the right hand rule
- Grasp the axis of rotation with your right hand
- Wrap your fingers in the direction of rotation
- Your thumb points in the direction of ω

Velocity Directions, Example

- In a, the disk rotates counterclockwise, the direction of the angular velocity is out of the page
- In b, the disk rotates clockwise, the direction of the angular velocity is into the page

Acceleration Directions

- If the angular acceleration and the angular velocity are in the same direction, the angular speed will increase with time
- If the angular acceleration and the angular velocity are in opposite directions, the angular speed will decrease with time

Forces Causing Centripetal Acceleration

- Newton's Second Law says that the centripetal acceleration is accompanied by a force
$-F_{C}=m a_{C}$
$-F_{C}$ stands for any force that keeps an object following a circular path
- Tension in a string
- Gravity
- Force of friction

Centripetal Force Example

- A puck of mass m is attached to a string
- Its weight is supported by a frictionless table
- The tension in the string causes the puck to move in a circle

Centripetal Force

- General equation

$$
F_{c}=m a_{c}=\frac{m v^{2}}{r}
$$

- If the force vanishes, the object will move in a straight line tangent to the circle of motion
- Centripetal force is a classification that includes forces acting toward a central point
- It is not a force in itself
- A centripetal force must be supplied by some actual, physical force

Problem Solving Strategy

- Draw a free body diagram, showing and labeling all the forces acting on the object(s)
- Choose a coordinate system that has one axis perpendicular to the circular path and the other axis tangent to the circular path
- The normal to the plane of motion is also often needed

Problem Solving Strategy, cont.

- Find the net force toward the center of the circular path (this is the force that causes the centripetal acceleration, F_{C})
- The net radial force causes the centripetal acceleration
- Use Newton' s second law
- The directions will be radial, normal, and tangential
- The acceleration in the radial direction will be the centripetal acceleration
- Solve for the unknown(s)

Applications of Forces Causing Centripetal Acceleration

- Many specific situations will use forces that cause centripetal acceleration
- Level curves
- Banked curves
- Horizontal circles
- Vertical circles

Level Curves

- Friction is the force that produces the centripetal acceleration
- Can find the frictional force, μ, or v
$v=\sqrt{\mu r g}$

Banked Curves

- A component of the normal force adds to the frictional force to allow higher speeds

$$
\begin{aligned}
& \tan \theta=\frac{v^{2}}{r g} \\
& \text { or } a_{c}=g \tan \theta
\end{aligned}
$$

Vertical Circle

- Look at the forces at the top of the circle
- The minimum speed at the top of the circle can be found

$$
v_{\mathrm{top}}=\sqrt{\mathrm{gR}}
$$

Forces in Accelerating Reference Frames

- Distinguish real forces from fictitious forces
- "Centrifugal" force is a fictitious force
- It most often is the absence of an adequate centripetal force
- Arises from measuring phenomena in a noninertial reference frame

Newton' s Law of Universal Gravitation

- If two particles with masses m_{1} and m_{2} are separated by a distance r, then a gravitational force acts along a line joining them, with magnitude given by

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

Universal Gravitation, 2

- G is the constant of universal gravitational
- $G=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
- This is an example of an inverse square law
- The gravitational force is always attractive

Universal Gravitation, 3

- The force that mass 1 exerts on mass 2 is equal and opposite to the force mass 2 exerts on mass 1
- The forces form a Newton's third law action-reaction

Universal Gravitation, 4

- The gravitational force exerted by a uniform sphere on a particle outside the sphere is the same as the force exerted if the entire mass of the sphere were concentrated on its center
- This is called Gauss’ Law

Gravitation Constant

- Determined experimentally
- Henry Cavendish
- 1798
- The light beam and mirror serve to amplify the motion

Gravity forces cause the rod to rotate away from its original position (the dashed line).

Applications of Universal Gravitation

- Acceleration due to gravity
- g will vary with altitude

$$
g=G \frac{M_{E}}{r^{2}}
$$

- In general,

$$
g_{\text {planet }}=G \frac{M_{\text {planet }}}{r^{2}}
$$

Table 7.1 Free-Fall
Acceleration g at Various
Altitudes

${\text { Altitude }(\mathbf{k m})^{\mathbf{a}}}^{g\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)}$	
1000	7.33
2000	5.68
3000	4.53
4000	3.70
5000	3.08
6000	2.60
7000	2.23
8000	1.93
9000	1.69
10000	1.49
50000	0.13

${ }^{\text {a }}$ All figures are distances above Earth's surface.

Gravitational Potential
 Energy

- $\mathrm{PE}=\mathrm{mgh}$ is valid only near the earth' s surface
- For objects high above the earth' s surface, an alternate expression is nee

$$
P E=-G \frac{M_{E} m}{r}
$$

- With $r>R_{\text {earth }}$
- Zero reference level is infinitely far from the earth

Escape Speed

- The escape speed is the speed needed for an object to soar off into space and not return

$$
v_{\text {esc }}=\sqrt{\frac{2 G M_{E}}{R_{E}}}
$$

- For the earth, $\mathrm{v}_{\text {esc }}$ is about $11.2 \mathrm{~km} / \mathrm{s}$
- Note, v is independent of the mass of the object

Various Escape Speeds

- The escape speeds for various members of the solar system
- Escape speed is one factor that determines a planet's atmosphere

Table 7.2 Escape Speeds for the Planets and the Moon

Planet	$\boldsymbol{v}_{\text {esc }}(\mathbf{k m} / \mathbf{s})$
Mercury	4.3
Venus	10.3
Earth	11.2
Moon	2.3
Mars	5.0
Jupiter	60.0
Saturn	36.0
Uranus	22.0
Neptune	24.0
Pluto	1.1
aln August 2006, the International	
Astronomical Union adopted a definition	
of a planet that separates Pluto from the	
other eight planets. Pluto is now defined	
as a "dwarf planet" (like the asteroid	
Ceres).	

Kepler's Laws

- All planets move in elliptical orbits with the Sun at one of the focal points.
- A line drawn from the Sun to any planet sweeps out equal areas in equal time intervals.
- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.

Kepler' s Laws, cont.

- Based on observations made by Brahe
- Newton later demonstrated that these laws were consequences of the gravitational force between any two objects together with Newton's laws of motion

Kepler' s First Law

- All planets move in elliptical orbits with the Sun at one focus.
- Any object bound to another by an inverse square law will move in an elliptical path
- Second focus is empty

Kepler's Second Law

- A line drawn from the

Sun to any planet will sweep out equal areas in equal times

- Area from A to B and C to D are the same
- The planet moves more slowly when farther from the Sun (A to B)

- The planet moves more quickly when closest to the Sun (C to D)

Kepler's Third Law

- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.
-T is the period, the time required for one revolution
$-\mathrm{T}^{2}=\mathrm{K} \mathrm{a}^{3}$
- For orbit around the Sun, $\mathrm{K}=\mathrm{K}_{\mathrm{S}}=2.97 \times 10^{-19} \mathrm{~s}^{2} / \mathrm{m}^{3}$
$-K$ is independent of the mass of the planet

Kepler's Third Law, cont

- Can be used to find the mass of the Sun or a planet
- When the period is measured in Earth years and the semi-major axis is in AU, Kepler's Third Law has a simpler form
$-T^{2}=a^{3}$

Communications Satellite

- A geosynchronous orbit
- Remains above the same place on the earth
- The period of the satellite will be 24 hr
- $r=h+R_{E}$
- Still independent of the mass of the satellite

