

Raymond A. Serway Chris Vuille

Chapter Three

Vectors and
Two-Dimensional Motion

Vectors and Motion

- In one-dimensional motion, vectors were used to a limited extent
- For more complex motion, manipulating vectors will be more important

Vector vs. Scalar Review

- All physical quantities encountered in this text will be either a scalar or a vector
- A vector quantity has both magnitude (size) and direction
- A scalar is completely specified by only a magnitude (size)

Vector Notation

- When handwritten, use an arrow: $\overrightarrow{\mathrm{A}}$
- When printed, will be in bold print with an arrow: $\overrightarrow{\mathrm{A}}$
- When dealing with just the magnitude of a vector in print, an italic letter will be used: A
- Italics will also be used to represent scalars

Properties of Vectors

- Equality of Two Vectors
- Two vectors are equal if they have the same magnitude and the same direction
- Movement of vectors in a diagram
- Any vector can be moved parallel to itself without being affected

Adding Vectors

- When adding vectors, their directions must be taken into account
- Units must be the same
- Geometric Methods
- Use scale drawings
- Algebraic Methods
- The resultant vector (sum) is denoted as

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}
$$

Adding Vectors Geometrically (Triangle or Polygon Method)

- Choose a scale
- Draw the first vector with the appropriate length and in the direction specified, with respect to a coordinate system
- Draw the next vector using the same scale with the appropriate length and in the direction specified, with respect to a coordinate system whose origin is the end of the first vector and parallel to the ordinate system used for the first vector

Graphically Adding Vectors, cont.

- Continue drawing the vectors "tip-to-tail"
- The resultant is drawn from the origin of the first vector to the end of the last vector
- Measure the length of the resultant and its angle
- Use the scale factor to convert length to actual magnitude
- This method is called the
 triangle method

Notes about Vector Addition

- Vectors obey the Commutative Law of Addition
- The order in which the vectors are added doesn't affect the result

$$
-\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

Graphically Adding Vectors, cont.

- When you have many vectors, just keep repeating the "tip-to-tail" process until all are included
- The resultant is still drawn from the origin of the first vector to the end of the last vector

More Properties of Vectors

- Negative Vectors
- The negative of the vector is defined as the vector that gives zero when added to the original vector
- Two vectors are negative if they have the same magnitude but are 180° apart (opposite directions)

$$
-\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{A}})=0
$$

Vector Subtraction

- Special case of vector addition
- Add the negative of the subtracted vector
- $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{B}})$
- Continue with standard vector addition procedure

Multiplying or Dividing a Vector by a Scalar

- The result of the multiplication or division is a vector
- The magnitude of the vector is multiplied or divided by the scalar
- If the scalar is positive, the direction of the result is the same as of the original vector
- If the scalar is negative, the direction of the result is opposite that of the original vector

Components of a Vector

- It is useful to use rectangular components to add vectors
- These are the projections of the vector along the x - and y-axes

Components of a Vector, cont.

- The x-component of a vector is the projection along the x-axis
- $A_{x}=A \cos \theta$
- The y-component of a vector is the projection along the y-axis
$-A_{y}=A \sin \theta$
- Then, $\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{A}}_{x}+\overrightarrow{\mathbf{A}}_{y}$

More About Components of a Vector

- The previous equations are valid only if $\boldsymbol{\Theta}$ is measured with respect to the x-axis
- The components can be positive or negative and will have the same units as the original vector

More About Components, cont.

- The components are the legs of the right triangle whose hypotenuse is $\overrightarrow{\mathrm{A}}$

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}} \text { and } \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
$$

- May still have to find θ with respect to the positive x-axis
- The value will be correct only if the angle lies in the first or fourth quadrant
- In the second or third quadrant, add 180°

Other Coordinate Systems

- It may be convenient to use a coordinate system other than horizontal and vertical
- Choose axes that are perpendicular to each other
- Adjust the components accordingly

Adding Vectors Algebraically

- Choose a coordinate system and sketch the vectors
- Find the x - and y-components of all the vectors
- Add all the x-components
- This gives $R_{x}: R_{x}=\sum v_{x}$

Adding Vectors Algebraically, cont.

- Add all the y-components
- This gives $R_{y}: R_{y}=\sum v_{y}$
- Use the Pythagorean Theorem to find the magnitude of the resultant: $R=\sqrt{R_{x}^{2}+R_{y}^{2}}$
- Use the inverse tangent function to find the direction of R :

$$
\theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
$$

Motion in Two Dimensions

- Using + or - signs is not always sufficient to fully describe motion in more than one dimension
- Vectors can be used to more fully describe motion
- Still interested in displacement, velocity, and acceleration

Displacement

- The position of an object is described by its position vector, $\overrightarrow{\boldsymbol{r}}$
- The displacement of the object is defined as the change in its position
$-\Delta \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$
- SI unit: meter (m)

Velocity

- The average velocity is the ratio of the displacement to the time interval for the displacement

$$
\overrightarrow{\mathbf{v}}_{a v} \equiv \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}
$$

- The instantaneous velocity is the limit of the average velocity as Δt approaches zero
- The direction of the instantaneous velocity is along a line that is tangent to the path of the particle and in the direction of motion
- SI unit: meter per second (m/s)

Acceleration

- The average acceleration is defined as the rate at which the velocity changes

$$
\overrightarrow{\mathbf{a}}_{a v}=\frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}
$$

- The instantaneous acceleration is the limit of the average acceleration as Δt approaches zero
- SI unit: meter per second squared ($\mathrm{m} / \mathrm{s}^{2}$)

Unit Summary (SI)

- Displacement
- m
- Average velocity and instantaneous velocity
- m/s
- Average acceleration and instantaneous acceleration
$-\mathrm{m} / \mathrm{s}^{2}$

Ways an Object Might Accelerate

- The magnitude of the velocity (the speed) may change with time
- The direction of the velocity may change with time
- Even though the magnitude is constant
- Both the magnitude and the direction may change with time

Projectile Motion

- An object may move in both the x and y directions simultaneously
- It moves in two dimensions
- The form of two dimensional motion we will deal with is an important special case called projectile motion

Assumptions of Projectile Motion

- We may ignore air friction
- We may ignore the rotation of the earth
- With these assumptions, an object in projectile motion will follow a parabolic path

Rules of Projectile Motion

- The x - and y-directions of motion are completely independent of each other
- The x-direction is uniform motion

$$
-a_{x}=0
$$

- The y-direction is free fall

$$
-a_{y}=-g
$$

- The initial velocity can be broken down into its x - and y-components

$$
-v_{o x}=v_{o} \cos \theta_{o} \quad v_{o y}=v_{o} \sin \theta_{o}
$$

Projectile Motion

Projectile Motion at Various Initial Angles

- Complementary values of the initial angle result in the same range
- The heights will be different
- The maximum range occurs at a projection angle of 45°

Some Details About the Rules

- x-direction

$$
\begin{aligned}
& -\mathrm{a}_{\mathrm{x}}=0 \\
& -v_{x}=v_{o_{x}}=v_{o} \cos \theta_{o}=\text { constant } \\
& -\mathrm{x}=\mathrm{v}_{\mathrm{ox}} \mathrm{t}
\end{aligned}
$$

- This is the only operative equation in the x-direction since there is uniform velocity in that direction

More Details About the Rules

- y-direction
$-v_{o_{y}}=v_{o} \sin \theta_{o}$
- Free fall problem
- $\mathrm{a}=-\mathrm{g}$
- Take the positive direction as upward
- Uniformly accelerated motion, so the motion equations all hold

Velocity of the Projectile

- The velocity of the projectile at any point of its motion is the vector sum of its x and y components at that point

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}} \text { and } \theta=\tan ^{-1} \frac{v_{y}}{v_{x}}
$$

- Remember to be careful about the angle's quadrant

Projectile Motion Summary

- Provided air resistance is negligible, the horizontal component of the velocity remains constant
- Since $\mathrm{a}_{\mathrm{x}}=0$
- The vertical component of the acceleration is equal to the free fall acceleration $-g$
- The acceleration in the y-direction is not zero at the top of the projectile's trajectory

Projectile Motion Summary, cont

- The vertical component of the velocity v_{y} and the displacement in the y-direction are identical to those of a freely falling body
- Projectile motion can be described as a superposition of two independent motions in the x - and y-directions

Problem-Solving Strategy

- Select a coordinate system and sketch the path of the projectile
- Include initial and final positions, velocities, and accelerations
- Resolve the initial velocity into x - and y components
- Treat the horizontal and vertical motions independently

Problem-Solving Strategy, cont

- Follow the techniques for solving problems with constant velocity to analyze the horizontal motion of the projectile
- Follow the techniques for solving problems with constant acceleration to analyze the vertical motion of the projectile

Some Variations of Projectile Motion

- An object may be fired horizontally
- The initial velocity is all in the x-direction
$-v_{o}=v_{x}$ and $v_{y}=0$
- All the general rules of projectile motion apply

Non-Symmetrical Projectile Motion

- Follow the general rules for projectile motion
- Break the y-direction into parts
- up and down
- symmetrical back to initial height and then the rest of the height

Special Equations

- The motion equations can be combined algebraically and solved for the range and maximum height

$$
\begin{aligned}
& \Delta x=\frac{v_{o}^{2} \sin 2 \theta_{o}}{g} \\
& \Delta y_{\max }=\frac{v_{o}^{2} \sin ^{2} \theta_{o}}{2 g}
\end{aligned}
$$

Relative Velocity

- Relative velocity is about relating the measurements of two different observers
- It may be useful to use a moving frame of reference instead of a stationary one
- It is important to specify the frame of reference, since the motion may be different in different frames of reference
- There are no specific equations to learn to solve relative velocity problems

Relative Velocity Notation

- The pattern of subscripts can be useful in solving relative velocity problems
- Assume the following notation:
- E is an observer, stationary with respect to the earth
- A and B are two moving cars

Relative Position Equations

- $\overrightarrow{\mathrm{r}}_{A E}$ is the position of $\operatorname{car} \mathrm{A}$ as measured by E
- $\vec{r}_{B E}$ is the position of car B as measured by E
- $\vec{r}_{A B}$ is the position of car A as measured by car B
- $\overrightarrow{\mathrm{r}}_{A B}=\overrightarrow{\boldsymbol{r}}_{A E}-\overrightarrow{\mathbf{r}}_{B E}$

Relative Position

- The position of car A relative to car B is given by the vector subtraction equation

Relative Velocity Equations

- The rate of change of the displacements gives the relationship for the velocities

$$
\overrightarrow{\mathbf{v}}_{A B}=\overrightarrow{\mathbf{v}}_{A E}-\overrightarrow{\mathbf{v}}_{B E}
$$

Problem-Solving Strategy: Relative Velocity

- Label all the objects with a descriptive letter
- Look for phrases such as "velocity of A relative to B"
- Write the velocity variables with appropriate notation
- If there is something not explicitly noted as being relative to something else, it is probably relative to the earth

Problem-Solving Strategy: Relative Velocity, cont

- Take the velocities and put them into an equation
- Keep the subscripts in an order analogous to the standard equation
- Solve for the unknown(s)

Relative Velocity, Example

- Need velocities
- Boat relative to river
- River relative to the Earth
- Boat with respect to the Earth (observer)
- Equation

$$
-\overrightarrow{\mathbf{v}}_{B R}=\overrightarrow{\mathbf{v}}_{B E}-\overrightarrow{\mathbf{v}}_{R E}
$$

