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Chapter Thirteen

Vibrations and Waves




Periodic Motion and Waves

* Periodic motion is one of the most important
kinds of physical behavior

o Will include a closer look at Hooke’ s Law

— A large number of systems can be modeled with
this idea

* Periodic motion can cause disturbances that
move through a medium in the form of a
wave
— Many kinds of waves occur in nature

Introduction



Hooke’ s Law

* F.=-kx
— F. is the spring force

— k is the spring constant

* Itis a measure of the stiffness of the spring
— A large k indicates a stiff spring and a small k indicates a soft spring

— X is the displacement of the object from its equilibrium
position
e x =0 at the equilibrium position
— The negative sign indicates that the force is always
directed opposite to the displacement

Section 13.1



Hooke s Law Force

 The force acts toward toward the equilibrium
position
— It is called the restoring force

* The direction of the restoring force is such
that the object is being either pushed or
pulled toward the equilibrium position

Section 13.1



Hooke s Law Applied to a Spring —

Mass System

When xis positive (the
spring is stretched), the

* When x is positive (to o
the right), F is negative e K

(to the left) a Lwwwwinm
* When x =0 (at SO
equilibrium), Fis 0 J
 When x is negative (to ar

the left), F is positive (to . W

the right) o
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When xis negative (the
spring is compressed), the
spring force is to the right.
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Motion of the Spring-Mass System

* Assume the object is initially pulled to a distance A
and released from rest

* As the object moves toward the equilibrium position,
F and a decrease, but v increases

e Atx=0, Fand a are zero, but vis a maximum

* The object’ s momentum causes it to overshoot the
equilibrium position

Section 13.1



Motion of the Spring-Mass System,

cont’ d

e The force and acceleration start to increase
in the opposite direction and velocity
decreases

* The motion momentarily comes to a stop at
X=-A

* |t then accelerates back toward the
equilibrium position

 The motion continues indefinitely

Section 13.1



Simple Harmonic Motion

 Motion that occurs when the net force along
the direction of motion obeys Hooke’ s Law

— The force is proportional to the displacement and
always directed toward the equilibrium position

 The motion of a spring mass system is an
example of Simple Harmonic Motion

Section 13.1



Simple Harmonic Motion, cont.

* Not all periodic motion over the same path
can be classified as Simple Harmonic motion

* To be Simple Harmonic motion, the force
needs to obey Hooke’ s Law

Section 13.1



Amplitude

 Amplitude, A

— The amplitude is the maximum position of the
object from its equilibrium position

— In the absence of friction, an object in simple
harmonic motion will oscillate between the
positions x = A

Section 13.1



Period and Frequency

* The period, T, is the time that it takes for the object
to complete one complete cycle of motion

— Fromx=Atox=-Aand backtox=A

* The frequency, f, is the number of complete cycles or
vibrations per unit time

— Frequency is the reciprocal of the period
—f=1/7T

Section 13.1



Acceleration of an Object in Simple

Harmonic Motion

 Newton’ s second law will relate force and
acceleration

* The force is given by Hooke’ s Law

* F=-kx=ma

—a=-kx/m

The acceleration is a function of position

— Acceleration is not constant and therefore the uniformly
accelerated motion equation cannot be applied

Section 13.1



Elastic Potential Energy

* A compressed spring has potential energy

— The compressed spring, when allowed to expand,
can apply a force to an object

— The potential energy of the spring can be
transformed into kinetic energy of the object

Section 13.2



Elastic Potential Energy, cont

* The energy stored in a stretched or compressed
spring or other elastic material is called elastic
potential energy

— PE, = %5kx?

* The energy is stored only when the spring is
stretched or compressed

e Elastic potential energy can be added to the
statements of Conservation of Energy and Work-
Energy

Section 13.2



Energy in a Spring Mass System

* A block sliding on a
frictionless system
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Energy Transformations

3

Initially, the mechanical energy is Vi >

entirely the block’s kinetic energy. AAAAAAAAA T é mvf
a

* The block is moving on a frictionless surface

* The total mechanical energy of the system is the kinetic energy
of the block



Energy Transformations, 2

Here the mechanical energy is the

; s | —
f the block’s k — . B W ( ;
sum of the block’s kinetic energy : E:é il L s

and the elastic potential energy
stored in the compressed spring. F x _»}

 The spring is partially compressed

* The energy is shared between kinetic energy and elastic
potential energy

* The total mechanical energy is the sum of the kinetic energy
and the elastic potential energy

Section 13.2



Energy Transformations, 3

When the block comes to rest, the L
mechanical energy is entirely {
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elastic potential energy.

* The spring is now fully compressed
* The block momentarily stops

* The total mechanical energy is stored as elastic
potential energy of the spring

Section 13.2



Energy Transformations, 4

- ~ — Xom
When the block leaves the spring, ‘_Vi ﬁ
the mechanical energy is again >\ | Fol o
solely the block’s kinetic energy. d 2 !

 When the block leaves the spring, the total mechanical energy
is in the kinetic energy of the block

* The spring force is conservative and the total energy of the
system remains constant

Section 13.2



Velocity as a Function of Position

* Conservation of Energy allows a calculation of the
velocity of the object at any position in its motion

v:i\/g(Az_xz)

— Speed is a maximum atx=0

— Speed is zero at x = A

— The * indicates the object can be traveling in either
direction

Section 13.2



Simple Harmonic Motion and Uniform

Circular Motion

A ballis attached to the rim
of a turntable of radius A

in uniform circular motion...

As the ball rotates like a particle ]

e The focus is on the shadow . )i
that the ball casts on the P =
screen m

e When the turntable rotates .

with a constant angular 7\
speed, the shadow moves in \p
simple harmonic motion

Turntable

/ o= ':éﬂi, \SCI‘@CH
A

I ...the ball’s shadow on the

screen moves back and forth

_ with simple harmonic motion.
Section 13.3




Period and Frequency from Circular

Motion

e Period T=27r\/%

— This gives the time required for an object of mass m
attached to a spring of constant k to complete one cycle of
its motion

1 1 |k
* Frequency f=—=
- Y 7 T Zn\/;

— Units are cycles/second or Hertz, Hz

Section 13.3



Angular Frequency

 The angular frequency is related to the frequency
[
k
WO=27Tf =,|—
\'m

* The frequency gives the number of cycles per second

* The angular frequency gives the number of radians
per second

Section 13.3



Effective Spring Mass

* A graph of T? versus m does not pass through
the origin

* The spring has mass and oscillates

* For a cylindrical spring, the effective additional
mass of a light spring is 1/3 the mass of the

spring

Section 13.3



Motion as a Function of Time

e Use of a reference circle

allows a description of
the motion

e x = A cos (2mft)

— X is the position at time t

— x varies between +A an
-A

d

Section 13.4

As the ball at Protates in a
circle with uniform angular
speed, its projection Q
along the x-axis moves with
simple harmonic motion.




Graphical Representation of Motion

x=A cos ot

* When x is a maximum 57

A\ T
or minimum, velocityis o \2/\ oA
’ _Z o \/

Zero |

* When x is zero, the ! : e~ ity
velocity is a maximum © T/O\ g/T t

 When x is a maximum 2 2

S

in the positive direction,
ais a maximum in the

negative direction /1N z

a=—-m?A cos ot

Section 13.4



Motion Equations

e Remember, the uniformly accelerated motion
equations cannot be used

* x=A cos (2mft) = A cos mt
e v ="-27fA sin (27tft) = -A o sin wt
* a=-41*f?A cos (2xtft) = -Amw? cos mt

Section 13.4



Verification of Sinusoidal Nature

* This experiment shows
the sinusoidal nature of
simple harmonic
motion

* The spring mass system
oscillates in simple
harmonic motion

 The attached pen traces
out the sinusoidal -
otion

motion of paper

Section 13.4



Simple Pendulum

* The simple pendulumis | e oo foree o
another example of a harmonically is the tangential
system that exhibits o g
simple harmonic ‘ \
motion

* The force is the
component of the
weight tangent to the
path of motion

— F,=-mgsin 6

Section 13.5



Simple Pendulum, cont

* In general, the motion of a pendulum is not simple
harmonic

 However, for small angles, it becomes simple
harmonic
— In general, angles < 15° are small enough
—sinB=0
— F,=-mg?o

e This force obeys Hooke’ s Law

Section 13.5



Period of Simple Pendulum

T=2r, |-
\g

* This shows that the period is independent of
the amplitude and the mass

 The period depends on the length of the

pendulum and the acceleration of gravity at
the location of the pendulum

Section 13.5



Simple Pendulum Compared to a Spring-
Mass System
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Physical Pendulum

* A physical pendulum
can be made from an Pivot —
object of any shape

|
: i,
* The center of mass |
oscillates along a - W
circular arc L sl

Section 13.5



Period of a Physical Pendulum

* The period of a physical pendulum is given by

/
T =2mw, |——
mglL

— |is the object’ s moment of inertia
— m is the object’ s mass

* For a simple pendulum, | = mL? and the equation
becomes that of the simple pendulum as seen before

Section 13.5



Damped Oscillations

* Only ideal systems oscillate indefinitely
* |n real systems, friction retards the motion

* Friction reduces the total energy of the
system and the oscillation is said to be
damped

Section 13.6



Damped Oscillations, cont.

 Damped motion varies
depending on the fluid used

— With a low viscosity fluid, the A
vibrating motion is preserved,
but the amplitude of vibration
decreases in time and the
motion ultimately ceases

The amplitude
decreases with time.

* This is known as
underdamped oscillation

Section 13.6



More Types of Damping

* With a higher viscosity, the object returns rapidly to
equilibrium after it is released and does not oscillate

— The system is said to be critically damped

* With an even higher viscosity, the piston returns to
equilibrium without passing through the equilibrium
position, but the time required is longer

— This is said to be overdamped

Section 13.6



Graphs of Damped Oscillators

e Curve a shows an
underdamped oscillator  «

e Curve b shows a
critically damped
oscillator

e Curve c shows an
overdamped oscillator

Section 13.6



WENRVi[e)ule]n

e A wave is the motion of a disturbance

 Mechanical waves require
— Some source of disturbance
— A medium that can be disturbed

— Some physical connection or mechanism though which
adjacent portions of the medium influence each other

* All waves carry energy and momentum

Section 13.7



Types of Waves — Traveling Waves

* Flip one end of a long
rope that is under
tension and fixed at the
other end

 The pulse travels to the
right with a definite
speed

e A disturbance of this

type is called a traveling
wave

The shape of the pulse is
approximately unchanged
as it travels to the right.

Section 13.7



Types of Waves — Transverse

* |n atransverse wave, each element that is disturbed
moves in a direction perpendicular to the wave
motion

‘&o

&
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Transverse wave

Section 13.7



Types of Waves — Longitudinal

* In alongitudinal wave, the elements of the medium
undergo displacements parallel to the motion of the

wave
* Alongitudinal wave is also called a compression wave

As the hand pumps back and forth, compressed regions
alternate stretched regions both in space and time.

Compressed Compressed
| gsb')_,\‘\,\\\A\ ~“-~“~wwwmwmwvsmww wwwwwwwws
<

Stretched Stretched

Longitudinal wave

Section 13.7



Other Types of Waves

 Waves may be a combination of transverse
and longitudinal

* A soliton consists of a solitary wave front that
propagates in isolation
— First studied by John Scott Russell in 1849
— Now used widely to model physical phenomena

Section 13.7



Waveform — A Picture of a Wave

e The brown curve is a

“snapshot” of the wave i .

at some instant in time ~ —v
 The blue curve is later

in time X

* The high points are
crests of the wave

 The low points are
troughs of the wave t=0 t

Section 13.7



Longitudinal Wave Represented as a Sine

Curve

* Alongitudinal wave can also be represented as a sine
curve

 Compressions correspond to crests and stretches
correspond to troughs

* Also called density waves or pressure waves

_ Equilibrium
density

Section 13.7



Producing Waves




Description of a Wave

e A steady stream of
pulses on a very long y

string produces a
continuous wave «— Ax

 The blade oscillates in
simple harmonic | Ay
motion X
 Each small segment of
the string, such as P,

oscillates with simple
harmonic motion

Section 13.8



Amplitude and Wavelength

 Amplitude is the

maximum displacement y
of string above the Ay \
equilibrium position

 Wavelength, A, is the |Ay
distance between two

successive points that
behave identically

Section 13.8



Speed of a Wave

e v=fA

— |s derived from the basic speed equation of
distance/time

* This is a general equation that can be applied
to many types of waves

Section 13.8



Speed of a Wave on a String

* The speed on a wave stretched under some

tension, F
F m
V= /— where [1=—
u L

— u is called the linear density

* The speed depends only upon the properties
of the medium through which the disturbance
travels

Section 13.9



Interference of Waves

 Two traveling waves can meet and pass
through each other without being destroyed
or even altered

 Waves obey the Superposition Principle

— When two or more traveling waves encounter each
other while moving through a medium, the resulting
wave is found by adding together the displacements
of the individual waves point by point

— Actually only true for waves with small amplitudes

Section 13.10



Constructive Interference

« Two waves, a and b, B - NN\

have the same
frequency and

amplitude B -\ A

— Are in phase

* The combined wave, c,
Combining the two waves in
haS the Same frequ.ency parts (a) and (b) results in a
and a greater amplitude wave with twice the amplitude.

X

Section 13.10



Constructive Interference in a String

A o

8 A\

ez

When the pulses overlap, as in parts (b), (c), and
(d), the net displacement of the string equals the
sum of the displacements produced by each pulse.

- N
b [ Ax&ﬂ,ﬂ @ mm/ \__ o amf%%%@mm
s/ \_X_
Two pulses are traveling in opposite directions

The net displacement when they overlap is the sum of the
displacements of the pulses

Note that the pulses are unchanged after the interference

Section 13.10



Destructive Interference

* Two waves, a and b, 8 _[_\{7/_\_}[&_

have the same
amplitude and

frequency b, _W\Y_

e One wave is inverted
relative to the other

. They are 180° out of Combining the waves in
(a) and (b) results in
phase

complete cancellation.

 When they combine, ‘ N
the waveforms cancel Al -——

Section 13.10



Destructive Interference in a String

- -
f \
a ﬂmyJJw m E=S=s2 &V@J
- -
When the pulses overlap, as in part (c), their
displacements subtract from each other.
N
~ -
El f([wj &IUZ a 2 e % §}17
mjzvv
- -

Two pulses are traveling in opposite directions

The net displacement when they overlap is decreased since the
displacements of the pulses subtract

Note that the pulses are unchanged after the interference

Section 13.10



Reflection of Waves —

Fixed End
* Whenever a traveling e —>
wave reaches a B N
boundary, some or all 2l —_—
of the wave is reflected /N
e When it is reflected bl e
from a fixed end, the N
wave is inverted
The shape remains the o N
same —
Wﬁ:ﬂect@d

pulse

Section 13.11



Reflected Wave — Free End

Incident

* When a traveling wave pulse —
reaches a boundary, all
B

or part of it is reflected

e When reflected from a
free end, the pulse is
not inverted

Reflected

¢ pulse
—>

Section 13.11



