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Chapter	Thirteen	
Vibra:ons	and	Waves	



Periodic	Mo:on	and	Waves	

•  Periodic	mo:on	is	one	of	the	most	important	
kinds	of	physical	behavior	

•  Will	include	a	closer	look	at	Hooke’s	Law	
– A	large	number	of	systems	can	be	modeled	with	
this	idea	

•  Periodic	mo:on	can	cause	disturbances	that	
move	through	a	medium	in	the	form	of	a	
wave	
– Many	kinds	of	waves	occur	in	nature	

Introduc:on	



Hooke’s	Law	

•  Fs	=	-	k	x	
–  Fs	is	the	spring	force	
–  k	is	the	spring	constant	

•  It	is	a	measure	of	the	s:ffness	of	the	spring	
–  A	large	k	indicates	a	s:ff	spring	and	a	small	k	indicates	a	soK	spring	

–  x	is	the	displacement	of	the	object	from	its	equilibrium	
posi:on	
•  x	=	0	at	the	equilibrium	posi:on	

–  The	nega:ve	sign	indicates	that	the	force	is	always	
directed	opposite	to	the	displacement	
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Hooke’s	Law	Force	

•  The	force	acts	toward	toward	the	equilibrium	
posi:on	
–  It	is	called	the	restoring	force	

•  The	direc:on	of	the	restoring	force	is	such	
that	the	object	is	being	either	pushed	or	
pulled	toward	the	equilibrium	posi:on	
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Hooke’s	Law	Applied	to	a	Spring	–	
Mass	System	

•  When	x	is	posi:ve	(to	
the	right),	F	is	nega:ve	
(to	the	leK)	

•  When	x	=	0	(at	
equilibrium),	F	is	0	

•  When	x	is	nega:ve	(to	
the	leK),	F	is	posi:ve	(to	
the	right)	
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Mo:on	of	the	Spring-Mass	System	

•  Assume	the	object	is	ini:ally	pulled	to	a	distance	A	
and	released	from	rest	

•  As	the	object	moves	toward	the	equilibrium	posi:on,	
F	and	a	decrease,	but	v	increases	

•  At	x	=	0,	F	and	a	are	zero,	but	v	is	a	maximum	
•  The	object’s	momentum	causes	it	to	overshoot	the	
equilibrium	posi:on	
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Mo:on	of	the	Spring-Mass	System,	
cont’d	

•  The	force	and	accelera:on	start	to	increase	
in	the	opposite	direc:on	and	velocity	
decreases	

•  The	mo:on	momentarily	comes	to	a	stop	at	
x	=	-	A		

•  It	then	accelerates	back	toward	the	
equilibrium	posi:on	

•  The	mo:on	con:nues	indefinitely	
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Simple	Harmonic	Mo:on	

•  Mo:on	that	occurs	when	the	net	force	along	
the	direc:on	of	mo:on	obeys	Hooke’s	Law	
– The	force	is	propor:onal	to	the	displacement	and	
always	directed	toward	the	equilibrium	posi:on	

•  The	mo:on	of	a	spring	mass	system	is	an	
example	of	Simple	Harmonic	Mo:on	
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Simple	Harmonic	Mo:on,	cont.	

•  Not	all	periodic	mo:on	over	the	same	path	
can	be	classified	as	Simple	Harmonic	mo:on	

•  To	be	Simple	Harmonic	mo:on,	the	force	
needs	to	obey	Hooke’s	Law	
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Amplitude	

•  Amplitude,	A	
– The	amplitude	is	the	maximum	posi:on	of	the	
object	from	its	equilibrium	posi:on	

–  In	the	absence	of	fric:on,	an	object	in	simple	
harmonic	mo:on	will	oscillate	between	the	
posi:ons	x	=	±A	
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Period	and	Frequency	

•  The	period,	T,	is	the	:me	that	it	takes	for	the	object	
to	complete	one	complete	cycle	of	mo:on		
–  From	x	=	A	to	x	=	-	A	and	back	to	x	=	A	

•  The	frequency,	ƒ,	is	the	number	of	complete	cycles	or	
vibra:ons	per	unit	:me	
–  Frequency	is	the	reciprocal	of	the	period	
–  ƒ	=	1	/	T	
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Accelera:on	of	an	Object	in	Simple	
Harmonic	Mo:on	

•  Newton’s	second	law	will	relate	force	and	
accelera:on	

•  The	force	is	given	by	Hooke’s	Law	
•  F	=	-	k	x	=	m	a	
–  a	=	-kx	/	m	

•  The	accelera:on	is	a	func:on	of	posi:on	
–  Accelera:on	is	not	constant	and	therefore	the	uniformly	
accelerated	mo:on	equa:on	cannot	be	applied	
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Elas:c	Poten:al	Energy	

•  A	compressed	spring	has	poten:al	energy	
– The	compressed	spring,	when	allowed	to	expand,	
can	apply	a	force	to	an	object	

– The	poten:al	energy	of	the	spring	can	be	
transformed	into	kine:c	energy	of	the	object	
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Elas:c	Poten:al	Energy,	cont	

•  The	energy	stored	in	a	stretched	or	compressed	
spring	or	other	elas:c	material	is	called	elas.c	
poten.al	energy	
–  PEs	=	½kx2	

•  The	energy	is	stored	only	when	the	spring	is	
stretched	or	compressed	

•  Elas:c	poten:al	energy	can	be	added	to	the	
statements	of	Conserva:on	of	Energy	and	Work-
Energy	
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Energy	in	a	Spring	Mass	System	

•  A	block	sliding	on	a	
fric:onless	system	
collides	with	a	light	
spring	

•  The	block	a_aches	to	
the	spring	

•  The	system	oscillates	in	
Simple	Harmonic	
Mo:on	
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Energy	Transforma:ons	

•  The	block	is	moving	on	a	fric:onless	surface	
•  The	total	mechanical	energy	of	the	system	is	the	kine:c	energy	

of	the	block	



Energy	Transforma:ons,	2	

•  The	spring	is	par:ally	compressed	
•  The	energy	is	shared	between	kine:c	energy	and	elas:c	

poten:al	energy	
•  The	total	mechanical	energy	is	the	sum	of	the	kine:c	energy	

and	the	elas:c	poten:al	energy	
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Energy	Transforma:ons,	3	

•  The	spring	is	now	fully	compressed	
•  The	block	momentarily	stops	
•  The	total	mechanical	energy	is	stored	as	elas:c	
poten:al	energy	of	the	spring	
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Energy	Transforma:ons,	4	

•  When	the	block	leaves	the	spring,	the	total	mechanical	energy	
is	in	the	kine:c	energy	of	the	block	

•  The	spring	force	is	conserva:ve	and	the	total	energy	of	the	
system	remains	constant	
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Velocity	as	a	Func:on	of	Posi:on	

•  Conserva:on	of	Energy	allows	a	calcula:on	of	the	
velocity	of	the	object	at	any	posi:on	in	its	mo:on	

–  Speed	is	a	maximum	at	x	=	0	
–  Speed	is	zero	at	x	=	±A	
–  The	±	indicates	the	object	can	be	traveling	in	either	
direc:on	
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Simple	Harmonic	Mo:on	and	Uniform	
Circular	Mo:on	

•  A	ball	is	a_ached	to	the	rim	
of	a	turntable	of	radius	A	

•  The	focus	is	on	the	shadow	
that	the	ball	casts	on	the	
screen	

•  When	the	turntable	rotates	
with	a	constant	angular	
speed,	the	shadow	moves	in	
simple	harmonic	mo:on	
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Period	and	Frequency	from	Circular	
Mo:on	

•  Period	

–  This	gives	the	:me	required	for	an	object	of	mass	m	
a_ached	to	a	spring	of	constant	k	to	complete	one	cycle	of	
its	mo:on	

•  Frequency	

–  Units	are	cycles/second	or	Hertz,	Hz	
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Angular	Frequency	

•  The	angular	frequency	is	related	to	the	frequency	

•  The	frequency	gives	the	number	of	cycles	per	second	
•  The	angular	frequency	gives	the	number	of	radians	
per	second	
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Effec:ve	Spring	Mass	

•  A	graph	of	T2	versus	m	does	not	pass	through	
the	origin	

•  The	spring	has	mass	and	oscillates	
•  For	a	cylindrical	spring,	the	effec.ve	addi:onal	
mass	of	a	light	spring	is	1/3	the	mass	of	the	
spring	
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Mo:on	as	a	Func:on	of	Time	

•  Use	of	a	reference	circle	
allows	a	descrip:on	of	
the	mo:on	

•  x	=	A	cos	(2πƒt)	
–  x	is	the	posi:on	at	:me	t	
–  x	varies	between	+A	and	
-A	
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Graphical	Representa:on	of	Mo:on	

•  When	x	is	a	maximum	
or	minimum,	velocity	is	
zero	

•  When	x	is	zero,	the	
velocity	is	a	maximum	

•  When	x	is	a	maximum	
in	the	posi:ve	direc:on,	
a	is	a	maximum	in	the	
nega:ve	direc:on	
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Mo:on	Equa:ons	

•  Remember,	the	uniformly	accelerated	mo:on	
equa:ons	cannot	be	used	

•  x	=	A	cos	(2πƒt)	=	A	cos	ωt	
•  v	=	-2πƒA	sin	(2πƒt)	=	-A	ω	sin	ωt	
•  a	=	-4π2ƒ2A	cos	(2πƒt)	=	-Aω2	cos	ωt	
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Verifica:on	of	Sinusoidal	Nature	

•  This	experiment	shows	
the	sinusoidal	nature	of	
simple	harmonic	
mo:on	

•  The	spring	mass	system	
oscillates	in	simple	
harmonic	mo:on	

•  The	a_ached	pen	traces	
out	the	sinusoidal	
mo:on	
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Simple	Pendulum	

•  The	simple	pendulum	is	
another	example	of	a	
system	that	exhibits		
simple	harmonic	
mo:on	

•  The	force	is	the	
component	of	the	
weight	tangent	to	the	
path	of	mo:on	
–  Ft	=	-	mg	sin	θ	
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Simple	Pendulum,	cont	

•  In	general,	the	mo:on	of	a	pendulum	is	not	simple	
harmonic	

•  However,	for	small	angles,	it	becomes	simple	
harmonic	
–  In	general,	angles	<	15°	are	small	enough	
–  sin	θ	≈	θ	
–  Ft	=	-	mg	θ	

•  This	force	obeys	Hooke’s	Law	
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Period	of	Simple	Pendulum	

•  This	shows	that	the	period	is	independent	of	
the	amplitude	and	the	mass	

•  The	period	depends	on	the	length	of	the	
pendulum	and	the	accelera:on	of	gravity	at	
the	loca:on	of	the	pendulum	
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Simple	Pendulum	Compared	to	a	Spring-
Mass	System	
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Physical	Pendulum	

•  A	physical	pendulum	
can	be	made	from	an	
object	of	any	shape	

•  The	center	of	mass	
oscillates	along	a	
circular	arc	
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Period	of	a	Physical	Pendulum	

•  The	period	of	a	physical	pendulum	is	given	by	

–  I	is	the	object’s	moment	of	iner:a	
–  m	is	the	object’s	mass	

•  For	a	simple	pendulum,	I	=	mL2	and	the	equa:on	
becomes	that	of	the	simple	pendulum	as	seen	before	
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Damped	Oscilla:ons	

•  Only	ideal	systems	oscillate	indefinitely	
•  In	real	systems,	fric:on	retards	the	mo:on	
•  Fric:on	reduces	the	total	energy	of	the	
system	and	the	oscilla:on	is	said	to	be	
damped	
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Damped	Oscilla:ons,	cont.	
•  Damped	mo:on	varies	

depending	on	the	fluid	used	
–  With	a	low	viscosity	fluid,	the	

vibra:ng	mo:on	is	preserved,	
but	the	amplitude	of	vibra:on	
decreases	in	:me	and	the	
mo:on	ul:mately	ceases	
•  This	is	known	as	
underdamped	oscilla:on	
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More	Types	of	Damping	

•  With	a	higher	viscosity,	the	object	returns	rapidly	to	
equilibrium	aKer	it	is	released	and	does	not	oscillate	
–  The	system	is	said	to	be	cri.cally	damped	

•  With	an	even	higher	viscosity,	the	piston	returns	to	
equilibrium	without	passing	through	the	equilibrium	
posi:on,	but	the	:me	required	is	longer	
–  This	is	said	to	be	overdamped	
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Graphs	of	Damped	Oscillators	
•  Curve	a	shows	an	
underdamped	oscillator	

•  Curve	b	shows	a	
cri:cally	damped	
oscillator	

•  Curve	c	shows	an	
overdamped	oscillator	
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Wave	Mo:on	

•  A	wave	is	the	mo:on	of	a	disturbance	
•  Mechanical	waves	require	
–  Some	source	of	disturbance	
–  A	medium	that	can	be	disturbed	
–  Some	physical	connec:on	or	mechanism	though	which	
adjacent	por:ons	of	the	medium	influence	each	other	

•  All	waves	carry	energy	and	momentum	
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Types	of	Waves	–	Traveling	Waves	

•  Flip	one	end	of	a	long	
rope	that	is	under	
tension	and	fixed	at	the	
other	end	

•  The	pulse	travels	to	the	
right	with	a	definite	
speed	

•  A	disturbance	of	this	
type	is	called	a	traveling	
wave	
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Types	of	Waves	–	Transverse	

•  In	a	transverse	wave,	each	element	that	is	disturbed	
moves	in	a	direc:on	perpendicular	to	the	wave	
mo:on	
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Types	of	Waves	–	Longitudinal	

•  In	a	longitudinal	wave,	the	elements	of	the	medium	
undergo	displacements	parallel	to	the	mo:on	of	the	
wave	

•  A	longitudinal	wave	is	also	called	a	compression	wave	
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Other	Types	of	Waves	

•  Waves	may	be	a	combina:on	of	transverse	
and	longitudinal	

•  A	soliton	consists	of	a	solitary	wave	front	that	
propagates	in	isola:on	
– First	studied	by	John	Sco_	Russell	in	1849	
– Now	used	widely	to	model	physical	phenomena	

Sec:on	13.7	



Waveform	–	A	Picture	of	a	Wave	

•  The	brown	curve	is	a	
“snapshot”	of	the	wave	
at	some	instant	in	:me	

•  The	blue	curve	is	later	
in	:me	

•  The	high	points	are	
crests	of	the	wave	

•  The	low	points	are	
troughs	of	the	wave	
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Longitudinal	Wave	Represented	as	a	Sine	
Curve	

•  A	longitudinal	wave	can	also	be	represented	as	a	sine	
curve	

•  Compressions	correspond	to	crests	and	stretches	
correspond	to	troughs	

•  Also	called	density	waves	or	pressure	waves	
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Producing	Waves	
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Descrip:on	of	a	Wave	

•  A	steady	stream	of	
pulses	on	a	very	long	
string	produces	a	
con:nuous	wave	

•  The	blade	oscillates	in	
simple	harmonic	
mo:on	

•  Each	small	segment	of	
the	string,	such	as	P,	
oscillates	with	simple	
harmonic	mo:on	
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Amplitude	and	Wavelength	

•  Amplitude	is	the	
maximum	displacement	
of	string	above	the	
equilibrium	posi:on	

•  Wavelength,	λ,	is	the	
distance	between	two	
successive	points	that	
behave	iden:cally	
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Speed	of	a	Wave	

•  v	=	ƒλ	
–  Is	derived	from	the	basic	speed	equa:on	of	
distance/:me	

•  This	is	a	general	equa:on	that	can	be	applied	
to	many	types	of	waves	
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Speed	of	a	Wave	on	a	String	

•  The	speed	on	a	wave	stretched	under	some	
tension,	F	

– µ	is	called	the	linear	density	
•  The	speed	depends	only	upon	the	proper:es	
of	the	medium	through	which	the	disturbance	
travels	
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Interference	of	Waves	

•  Two	traveling	waves	can	meet	and	pass	
through	each	other	without	being	destroyed	
or	even	altered	

•  Waves	obey	the	Superposi.on	Principle	
– When	two	or	more	traveling	waves	encounter	each	
other	while	moving	through	a	medium,	the	resul:ng	
wave	is	found	by	adding	together	the	displacements	
of	the	individual	waves	point	by	point	

– Actually	only	true	for	waves	with	small	amplitudes	
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Construc:ve	Interference	

•  Two	waves,	a	and	b,	
have	the	same	
frequency	and	
amplitude	
–  Are	in	phase	

•  The	combined	wave,	c,	
has	the	same	frequency	
and	a	greater	amplitude	
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Construc:ve	Interference	in	a	String	

•  Two	pulses	are	traveling	in	opposite	direc:ons	
•  The	net	displacement	when	they	overlap	is	the	sum	of	the	

displacements	of	the	pulses	
•  Note	that	the	pulses	are	unchanged	aKer	the	interference	
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Destruc:ve	Interference	

•  Two	waves,	a	and	b,	
have	the	same	
amplitude	and	
frequency	

•  One	wave	is	inverted	
rela:ve	to	the	other	

•  They	are	180°	out	of	
phase	

•  When	they	combine,	
the	waveforms	cancel	
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Destruc:ve	Interference	in	a	String	

•  Two	pulses	are	traveling	in	opposite	direc:ons	
•  The	net	displacement	when	they	overlap	is	decreased	since	the	

displacements	of	the	pulses	subtract	
•  Note	that	the	pulses	are	unchanged	aKer	the	interference	
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Reflec:on	of	Waves	–		
Fixed	End	

•  Whenever	a	traveling	
wave	reaches	a	
boundary,	some	or	all	
of	the	wave	is	reflected	

•  When	it	is	reflected	
from	a	fixed	end,	the	
wave	is	inverted	

•  The	shape	remains	the	
same	
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Reflected	Wave	–	Free	End	

•  When	a	traveling	wave	
reaches	a	boundary,	all	
or	part	of	it	is	reflected	

•  When	reflected	from	a	
free	end,	the	pulse	is	
not	inverted	
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